Header

Skip to main content

Slider

ATTR-CM: Don’t Assume it’s Wild-Type TTR Amyloidosis

Historically it has been thought that the majority of elderly cardiomyopathy patients diagnosed with amyloidosis, ATTR-CM, transthyretin amyloid cardiomyopathy, suffered from wild-type, a non-genetic version of the disease that most commonly affects but is not exclusive to men over seventy years of age. A study in the UK conducted from January 2010 through August 2022 was conducted to determine whether this was true. It is thought that this study was the first time such a large population of ATTR-CM patients was studied to consider the actual prevalence of the differing disease types. The researchers stated purpose was “ …to estimate the prevalence, clinical characteristics and prognostic implications of transthyretin (TTR) variants among elderly patients diagnosed with ATTR-CM.”1

A paper detailing the results of the study, ‘Prevalence, characteristics and outcomes of older patients with hereditary versus wild-type transthyretin amyloid cardiomyopathy’ by A. Porcari et al.1, published January 16, 2023 in the European Journal of Heart Failure provide specifics about the methodology, statistical analysis of the results, and an analysis of the findings. An invited editorial about that article, ‘Variant and wild type transthyretin amyloidosis: two sides of the same coin or different currencies in different pockets?’, by Osnat Itzhaki Ben Zadok and Rodney H. Falk provides comments and an assessment of the study discussed in the A. Porcari paper.2  A helpful summary of the differences between wild-type and hereditary amyloidosis can be found here.3

With increased awareness of amyloidosis and the various types as well as developments in the technology used to diagnose and type ATTR amyloidosis, it has now become relatively easy to determine whether a patient is suffering from the hereditary version or the wild-type. Imaging has become preferred over the previous “gold standard” of endomyocardial biopsy. The study population was selected from those for whom ATTR-CM was established as the diagnosis using echocardiography, nuclear scintigraphy, and TTR gene sequencing at the National Amyloidosis Center (NAC) in London, the single center for diagnosing and treating amyloidosis patients in the UK. Correct diagnosis and typing of the disease could allow for appropriate treatment to begin resulting in the likelihood of an improved disease management and outcome for the patient.

A total of 2,029 patients were accepted into the study, none of whom had previously received genetic testing for the disease. Patients identified through gene sequencing as having the hereditary version of the disease, 141 total, were moved to medication as soon as it became available. Of note, all patients who had been treated with any of the then available medication for ATTR amyloidosis — tafamidis, inotersen, diflunisal, or patisiran, and all patients who were participating in clinical trials for therapies for the disease — were excluded from the study. This was to remove the possibility of the therapies skewing the results. All participants were 70 years of age or older. The patients were all followed at the NAC in London, the only center for the diagnosis and treatment of Amyloidosis in the UK. This allowed for unprecedented access to what is thought to be the majority of ATTR-CM in the country. All causes of death were tracked for the duration of the study.

The table below illustrates the number of ATTM-CM patients in the study who were thought to be suffering from wild-type amyloidosis but after testing were actually found to have a hereditary, variant, version of the disease instead. Specific data from the tests used to make this determination can be found in the article where the following table is found.

Correcting the diagnosis then allowed the patients to be moved to more appropriate therapies.

Further discussion in the Porcari article considers the study population and those currently listed in the THAOS registry4  by percentage of total ATTR-CM  patients in the United Kingdom, the United States, and the rest of the World for both wild-type and variant disease with the more common variants also identified. It is thought that as many as 20% of ATTR-CM identified as having the wild-type disease likely have a variant version but have not had genetic testing to correctly determine that.1

The article goes on to discuss the most commonly seen demographics and presentations of  ATTRwt-CM and ATTRv-CM in the elderly, and the effects of the various therapies currently available as well as their mechanisms and limitations.

While some symptoms of wild-type amyloidosis and hereditary, variant, amyloidosis are similar, it is easy to differentiate between the two diseases. With careful testing, as noted in the article, this then allows for the proper management and treatment of the disease. The concluding paragraph of the paper really sums up the findings and sends an important message.

In conclusion, up to 20.7% of elderly patients with ATTR-CM carry a pathogenic TTR mutation with a higher proportion still among specific ethnic groups. Among patients diagnosed with ATTR-CM, younger age at diagnosis, female gender, Afro-Caribbean ethnicity, AF, IHD, polyneuropathy and orthostatic hypotension are independently associated with ATTRv-CM. A diagnosis of ATTR-CM should prompt sequencing of the TTR gene in all patients, regardless of age, gender and ethnicity.”1

 

Sources:
1.     https://onlinelibrary.wiley.com/doi/full/10.1002/ejhf.2776  Prevalence, characteristics and outcomes of older patients with hereditary versus wild-type transthyretin amyloid cardiomyopathy, Aldostefano Porcari, Yousuf Razvi, Ambra Masi, Rishi Patel, Adam Ioannou, Muhammad U. Rauf, David F. Hutt, Dorota Rowczenio, Janet Gilbertson, Ana Martinez-Naharro, Lucia Venneri, Carol Whelan, Helen Lachmann, Ashutosh Wechalekar, Candida Cristina Quarta, Marco Merlo, Gianfranco Sinagra, Philip N. Hawkins, Marianna Fontana, Julian D. Gillmore, January 2023

2.     https://onlinelibrary.wiley.com/doi/10.1002/ejhf.2808  Variant and wild type transthyretin amyloidosis: two sides of the same coin or different currencies in different pockets?
Osnat Itzhaki Ben Zadok, Rodney H. Falk, February 2023

3.     https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500251/   Transthyretin Amyloidosis: Update on the Clinical Spectrum, Pathogenesis, and Disease-Modifying Therapies
Haruki Koike  and Masahisa Katsuno, September 2020

4.     https://www.jns-journal.com/article/S0022-510X(15)00745-5/fulltext THAOS – The Transthyretin Amyloidosis Outcome Survey , F. Barroso, M. Waddinton-Cruz, et. Al., October 2015

 

Patient Insights: Biopsy the CTR tissue!

Our patient speakers at the Amyloidosis Speakers Bureau are powerful educators and offer compelling insights.

Have a listen to this brief clip from Linda with thoughts on how orthopedic hand surgeons can be on the front line of diagnosis through CTR tissue biopsy.

Heart Failure & Amyloidosis

 

We would like to thank the Cleveland Clinic for this information, unless specifically noted otherwise.

 

WHAT IS HEART FAILURE?

Heart failure occurs when the heart muscle doesn’t pump blood as well as it should. Heart failure can occur if the heart cannot pump (systolic) or fill (diastolic) adequately.

Almost six million Americans have heart failure, and more than 870,000 people are diagnosed with heart failure each year. Heart failure (congestive heart failure) is the leading cause of hospitalization in people older than 65.

 

WHAT ARE THE TYPES OF HEART FAILURE?

There are many causes of heart failure, but the condition is generally broken down into these types:

Left-sided heart failure

Heart failure with reduced left ventricular function (HF-rEF)

The lower left chamber of the heart (left ventricle) gets bigger and cannot squeeze (contract) hard enough to pump the right amount of oxygen-rich blood to the rest of the body.

Heart failure with preserved left ventricular function (HF-pEF)

The heart contracts and pumps normally, but the bottom chambers of the heart (ventricles) are thicker and stiffer than normal. Because of this, the ventricles can’t relax properly and fill up all the way. Because there’s less blood in the ventricles, the heart pumps out less blood to the rest of the body when it contracts.

Right-sided heart failure

Heart failure can also affect the right side of the heart. Left-sided heart failure is the most common cause of this. Other causes include certain lung problems and issues in other organs.

 

WHAT ARE THE SYMPTOMS OF HEART FAILURE?

Symptoms of heart failure include:

  • Shortness of breath.
  • Feeling tired (fatigue) and having leg weakness when active.
  • Swelling in ankles, legs and abdomen.
  • Weight gain.
  • Need to urinate while resting at night.
  • Rapid or irregular heartbeats (palpitations).
  • A dry, hacking cough.
  • A full (bloated) or hard stomach, loss of appetite or upset stomach (nausea).

Symptoms of heart failure can range from mild to severe and may come and go. Unfortunately, heart failure usually gets worse over time. As it worsens, patients may have more or different signs or symptoms.

 

WHAT CAUSES HEART FAILURE?

Although the risk of heart failure doesn’t change with age, you’re more likely to have heart failure when older. Many medical conditions that damage the heart muscle can cause heart failure. Common conditions include:

 

WHAT TYPES OF TESTS ARE USED TO DIAGNOSE HEART FAILURE?

Common tests include:

 

WHAT IS THE IMPORTANCE OF EJECTION FRACTION?

Ejection fraction (EF) is one way to measure the severity of the condition. If it’s below normal, it can mean the patient has heart failure. The ejection fraction tells the healthcare provider how good of a job the left or right ventricle is doing at pumping blood. Usually, the EF number is talking about how much blood the left ventricle is pumping out because it’s the heart’s main pumping chamber.

Several non-invasive tests can measure the EF. A normal left ventricular ejection fraction (LVEF) is 53% to 70%. An LVEF of 65%, for example, means that 65% of the total amount of blood in the left ventricle is pumped out with each heartbeat. The EF can go up and down, based on the heart condition and how well the treatment works.

 

HOW IS AMYLOIDOSIS RELATED TO HEART FAILURE?

As stated by the Cleveland Clinic, cardiomyopathy is one of the medical conditions that damage the heart muscle and can cause heart failure. Cardiomyopathy refers to conditions that affect the myocardium (heart muscle). Cardiomyopathy can make your heart stiffen, enlarged or thickened and can cause scar tissue. As a result, your heart can’t pump blood effectively to the rest of your body. In time, your heart can weaken and cardiomyopathy can lead to heart failure. 

One of the common types of cardiomyopathy is Transthyretin amyloid cardiomyopathy (ATTR-CM), characterized by an abnormal protein buildup (ATTR amyloidosis) in the heart’s left ventricle (primary blood-pumping chamber). ATTR-CM is a life-threatening, underrecognized, and underdiagnosed type of amyloidosis that affects the heart and is associated with heart failure. It was once considered a rare disease, but recently, improved diagnostic tools and greater attention to early manifestations of the disease are leading to an increasing number of diagnosed cases. (3)

 

Listen to an American Heart Association podcast (12 minutes) titled “What is ATTR-CM?”

 

ATTR-CM Basics (5)

 

Recent Research (4)

Davies et al.(2022) published an informative paper titled “A Simple Score to Identify Increased Risk of Transthyretin Amyloid Cardiomyopathy in Heart Failure with Preserved Ejection Fraction.” In conclusion, they believe their findings can increase recognition of ATTR-CM among patients with HFpEF in the community.

Key Points

Question.  Which patients with heart failure and preserved ejection fraction (HFpEF) have an increased risk of transthyretin amyloid cardiomyopathy (ATTR-CM) warranting technetium Tc 99m pyrophosphate scintigraphy?

Findings.  The study team developed and validated an ATTR-CM score comprising of 3 clinical (age, male sex, hypertension diagnosis) and 3 echocardiographic (ejection fraction, posterior wall thickness, relative wall thickness) variables to predict increased risk of ATTR-CM in HFpEF cohorts with variable ATTR-CM prevalence.

Meaning.  Because specific and highly effective therapy for ATTR-CM exists, the ATTR-CM score can provide a simple tool to guide use of technetium Tc 99m pyrophosphate scintigraphy and increase recognition and appropriate therapy of ATTR-CM in patients with HFpEF.

Abstract

Importance.  Transthyretin amyloid cardiomyopathy (ATTR-CM) is a form of heart failure (HF) with preserved ejection fraction (HFpEF). Technetium Tc 99m pyrophosphate scintigraphy (PYP) enables ATTR-CM diagnosis. It is unclear which patients with HFpEF have sufficient risk of ATTR-CM to warrant PYP.

Objective  To derive and validate a simple ATTR-CM score to predict increased risk of ATTR-CM in patients with HFpEF.

Design, Setting, and Participants.  Retrospective cohort study of 666 patients with HF (ejection fraction ≥ 40%) and suspected ATTR-CM referred for PYP at Mayo Clinic, Rochester, Minnesota, from May 10, 2013, through August 31, 2020. These data were analyzed September 2020 through December 2020. A logistic regression model predictive of ATTR-CM was derived and converted to a point-based ATTR-CM risk score. The score was further validated in a community ATTR-CM epidemiology study of older patients with HFpEF with increased left ventricular wall thickness ([WT] ≥ 12 mm) and in an external (Northwestern University, Chicago, Illinois) HFpEF cohort referred for PYP. Race was self-reported by the participants. In all cohorts, both case patients and control patients were definitively ascertained by PYP scanning and specialist evaluation.

Main Outcomes and Measures.  Performance of the derived ATTR-CM score in all cohorts (referral validation, community validation, and external validation) and prevalence of a high-risk ATTR-CM score in 4 multinational HFpEF clinical trials.

Results.  Participant cohorts included were referral derivation (n = 416; 13 participants [3%] were Black and 380 participants [94%] were White; ATTR-CM prevalence = 45%), referral validation (n = 250; 12 participants [5%]were Black and 228 participants [93%] were White; ATTR-CM prevalence = 48% ), community validation (n = 286; 5 participants [2%] were Black and 275 participants [96%] were White; ATTR-CM prevalence = 6% ), and external validation (n = 66; 23 participants [37%] were Black and 36 participants [58%] were White; ATTR-CM prevalence = 39%). Score variables included age, male sex, hypertension diagnosis, relative WT more than 0.57, posterior WT of 12 mm or more, and ejection fraction less than 60% (score range −1 to 10). Discrimination (area under the receiver operating characteristic curve [AUC] 0.89; 95% CI, 0.86-0.92; P < .001) and calibration (Hosmer-Lemeshow; χ2 = 4.6; P = .46) were strong. Discrimination (AUC ≥ 0.84; P < .001 for all) and calibration (Hosmer-Lemeshow χ2  = 2.8; P = .84; Hosmer-Lemeshow χ2  = 4.4; P = .35; Hosmer-Lemeshow χ2 = 2.5; P = .78 in referral, community, and external validation cohorts, respectively) were maintained in all validation cohorts. Precision-recall curves and predictive value vs prevalence plots indicated clinically useful classification performance for a score of 6 or more (positive predictive value ≥25%) in clinically relevant ATTR-CM prevalence (≥10% of patients with HFpEF) scenarios. In the HFpEF clinical trials, 11% to 35% of male and 0% to 6% of female patients had a high-risk (≥6) ATTR-CM score.

Conclusions and Relevance  A simple 6 variable clinical score may be used to guide use of PYP and increase recognition of ATTR-CM among patients with HFpEF in the community.

 

In closing … a known condition of heart failure is cardiomyopathy, of which one type – Transthyretin Amyloid Cardiomyopathy (ATTR-CM) – may be the underlying cause. In seeking answers to heart failure, keep this in mind.

 

 

Sources:

  1. https://my.clevelandclinic.org/health/diseases/17069-heart-failure-understanding-heart-failure
  2. https://my.clevelandclinic.org/health/diseases/16841-cardiomyopathy
  3. https://www.emergency-live.com/health-and-safety/cardiac-amyloidosis-what-it-is-and-tests-for-diagnosis/?fbclid=IwAR0lNrxqubUbFAhNcew233YU_CqN6Udf_RYj1FhBAErSrqou5CKjypZPk4A
  4. Davies DR, Redfield MM, Scott CG, et al. A Simple Score to Identify Increased Risk of Transthyretin Amyloid Cardiomyopathy in Heart Failure With Preserved Ejection Fraction. JAMA Cardiol. 2022;7(10):1036–1044. doi:10.1001/jamacardio.2022.1781
  5. https://www.yourheartsmessage.com/about-attr-cm 
  6. American Heart Association – What is ATTR-CM

https://www.heart.org/-/media/Files/Health-Topics/Answers-by-Heart/What-Is-ATTRCM.pdf

 

Int’l Symposium on Amyloidosis (ISA) – Heidelberg 2022

We are super proud to have presented the story about the Amyloidosis Speakers Bureau at last week’s International Symposium on Amyloidosis (ISA) in Heidelberg, Germany. 
 
Ours was not the typical presentation at such a prestigious global medical conference, but our message “PATIENTS ARE POWERFUL EDUCATORS” was seemingly super well received. Afterwards we heard words such as “transformative” and “brilliant” … opening minds about the impact that patients can bring to raise awareness. Hopefully, there will be good actions to come from this! Meanwhile, we press on to educate U.S. medical students and residents.

THE PANEL INCLUDED (Thank you to Alexion Pharmaceuticals for sponsoring our panel):
– Professor JULIAN GILLMORE and Professor ASHUTOSH WECHALEKAR from the National Amyloidosis Centre, UCL – University College of London, UK
– Professor GIOVANNI PALLADINI, Director of the Amyloidosis Research and Treatment Center at the University Hospital San Matteo in Pavia, Italy
– DR. VAISHALI SANCHORAWALA, Director of Amyloidosis Center at Boston University
– DR. RODNEY FALK, Director of the Cardiac Amyloidosis Program at Brigham and Women’s Hospital (BWH)
– DEBORAH BOEDICKER, Board Member at Mackenzie’s Mission and Operating Committee Member of the Amyloidosis Speakers Bureau
– KRISTEN HSU, Executive Director of Clinical Research at the Amyloidosis Research Consortium

We are proud of the work we collectively do at the ASB and the impact we are making. Now into our fourth academic year, we have given over 200 presentations to more than 9,600 medical students and residents!
Our speakers, and their willingness to share their authentic story, are the cornerstone of this powerful educational initiative. 
With endless appreciation for your support and engagement,
Deb Boedicker

Carpal Tunnel & Amyloidosis – An Update

The connection between carpal tunnel and amyloidosis is one that is already established. In fact, carpal tunnel syndrome is one of many potential symptoms of amyloidosis, but it is a symptom that tends to present early. It is not uncommon to hear patients started experiencing carpal tunnel five to ten years before they were diagnosed with amyloidosis.

TWO STUDIES

Clinicians are becoming aware of this connection and are starting to investigate the connection. Two studies have been published that investigate the connection between carpal tunnel and amyloidosis.

The first study from 2018 was a “prospective, cross-sectional, multidisciplinary study of consecutive men age ≥ 50 years and women ≥ 60 years undergoing carpal tunnel release surgery. Biopsy specimens of tenosynovial tissue were obtained and stained with Congo red.”3 Of the patients that were eligible for Congo red staining (n=98), a total of 10 came back positive for amyloidosis.3 That is a hit rate of just over 10%.

In a larger second study from 2022, a total of 185 patients underwent carpal tunnel release surgery, where 54 biopsies confirmed evidence of amyloidosis with Congo red staining.1 That is a hit rate of 29%.

The results of these studies are powerful and provide an opportunity to change the trajectory of diagnosing amyloidosis, particularly doing so much earlier. According to the Bureau of Labor and Statistics and the National Institute for Occupational Safety and Health, carpal tunnel release surgery is the second most common type of surgery, performed over 230,000 times every year.4

PERSPECTIVE FROM AN ORTHOPEDIC SURGEON

“Since carpal tunnel syndrome is often one of the earliest signs of underlying amyloidosis, those with undiagnosed disease could greatly benefit from tissue biopsies at the time of surgery. A positive biopsy result could initiate the road to disease stabilization and hopefully future cures, avoiding the all-too-often rapid decline of health before final recognition. Bringing the surgeon into the arena of amyloidosis diagnosis and care broadens the net for catching this disease early and prepares the surgeon as a team-player for future medical support.”

Charles Williams Sr., MD

Retired Orthopedic Surgeon

 

CONCLUSION

Screening for amyloidosis in carpal tunnel release surgery can be a low-cost method of detecting amyloidosis that should be considered.2

Most importantly, identifying and diagnosing amyloidosis early has the potential to significantly improve patient outcomes and substantially alter the course of disease.

Truly life changing.

P.S. Click here to read our previous post on Carpal Tunnel & Amyloidosis

———————————————————-

Resources:

  1. https://pubmed.ncbi.nlm.nih.gov/35469694/
  2. https://consultqd.clevelandclinic.org/cardiac-amyloidosis-look-to-the-wrist-for-an-early-diagnostic-clue/
  3. https://www.sciencedirect.com/science/article/pii/S0735109718381634?via%3Dihub
  4. https://www.orthoarlington.com/contents/patient-info/conditions-procedures/11-astounding-carpal-tunnel-statistics
  5. https://www.verywellhealth.com/open-surgery-or-endoscopic-carpal-tunnel-surgery-4083069
  6. https://mailchi.mp/ea0a0bb441eb/carpal-tunnel-amyloidosis

Peripheral Neuropathy & Amyloidosis

Neuropathy, also known as peripheral neuropathy, is a broad term that is used to describe damage to the nerves outside of the brain and spinal cord. There are over 100 types of peripheral neuropathy that can be classified into four categories, with each type having their own symptoms and prognosis. In this article, we’ll discuss the types of peripheral neuropathy and its connection to amyloidosis.

 

Symptoms

One of the challenges with neuropathy is the fact that symptoms can vary significantly based on what nerve is damaged. Additionally, symptoms can develop over the course of months to years (chronic neuropathy) or come on suddenly (acute neuropathy). Some of the most commonly seen symptoms are listed below:

  • Muscle weakness
  • Cramps
  • Muscle twitching
  • Loss of muscle and bone
  • Changes in skin, hair, or nails
  • Numbness
  • Loss of sensation or feeling in body parts
  • Loss of balance or other functions as a side effect of the loss of feeling in the legs, arms, or other body parts
  • Emotional disturbances
  • Sleep disruptions
  • Loss of pain or sensation that can put you at risk, such as not feeling an impending heart attack or limb pain
  • Inability to sweat properly, leading to heat intolerance
  • Loss of bladder control, leading to infection or incontinence
  • Dizziness, lightheadedness, or fainting because of a loss of control over blood pressure
  • Diarrhea, constipation, or incontinence related to nerve damage in the intestines or digestive tract
  • Trouble eating or swallowing
  • Life-threatening symptoms, such as difficulty breathing or irregular heartbeat

 

Types of Neuropathy

  1. Motor Neuropathy → Damage to the motor nerves control how you move.
  2. Sensory Neuropathy → Damage to sensory nerves control what you feel.
  3. Autonomic Nerve Neuropathy → Damage to autonomic nerves that control functions that are involuntary (ie. you do not consciously control).
  4. Combination Neuropathies → Damage to a mix of 2 or 3 of these other types of neuropathies. For example, damage to both sensory and motor nerves would result in sensory-motor neuropathy.

 

Amyloidosis

Peripheral Neuropathy is one of the hallmarks of amyloidosis, often seen in the transthyretin form of amyloidosis (ATTR). ATTR-PN, or transthyretin amyloid polyneuropathy, is a disease where the transthyretin protein becomes unstable and misfolds. This unstable protein (“amyloid”) then deposits in the nerve tissue, resulting in damage to these nerves. While amyloid deposits primarily in the peripheral nerves, it is not uncommon for amyloid deposition in the autonomic nerves as well. 

While peripheral neuropathy is most commonly associated with ATTR amyloidosis, it should be noted that peripheral neuropathy is also seen in 15-35% of patients with AL amyloidosis.

Most importantly, these are the most common and important signs and symptoms to be aware of, in order to diagnose ATTR amyloidosis.

Looking to learn more about peripheral neuropathy in amyloidosis? Check out this wonderful video, where the Amyloidosis Support Group hosts Dr. Chafic Karam to discuss the topic in great depth. https://www.youtube.com/watch?v=9PsSST2gOIg

 

===========================================================

References:

https://my.clevelandclinic.org/health/diseases/14737-neuropathy

https://www.hopkinsmedicine.org/health/conditions-and-diseases/peripheral-neuropathy

https://www.mayoclinic.org/diseases-conditions/peripheral-neuropathy/symptoms-causes/syc-20352061

https://practicalneurology.com/articles/2021-july-aug/neuromuscular-amyloidosis

https://healthjade.net/familial-amyloidosis/

 

Hereditary Amyloidosis Among Portuguese Americans

According to Alnylam Pharmaceuticals, “Americans of Portuguese descent are disproportionately impacted by hereditary ATTR (hATTR) amyloidosis, a rare, rapidly progressive, and debilitating disease affecting multiple organs and tissues. These individuals have a high prevalence of the V30M variant, which is the most common of the more than 120 gene variants known to be associated with hATTR amyloidosis. The V30M variant is associated with nerve symptoms of numbness, tingling, and burning pain in hands and feet. People of Portuguese descent who develop the disease experience earlier onset symptoms, with 87 percent experiencing symptoms before age 40.

 

Watch this informative news segment featuring Dr. Anthony Geraci, a neurologist who specializes in managing hATTR amyloidosis. He is joined by Julio, who was diagnosed with the disease a few years ago, and his daughter and caregiver Renee. Together they explore the experience of living with this rare, genetic disease.”

The good news is there are FDA-approved treatments and clinical trials which may be helpful; however, the key is to get diagnosed as early as possible. 

ASB: 2021 Year-End Review

Our mission is to educate future doctors about amyloidosis, with the belief that heightened awareness will lead to earlier diagnosis and ultimately improve patient survivorship. We know that the level of medical school education about amyloidosis runs the gamut, from a small mention in textbooks to classroom discussions with medical professionals, although the bias is overwhelmingly towards the “minor mention.” In addition, you’ll read below about our exciting expansion into residency programs – those new physicians now practicing and diagnosing patients. As a result, we are confident our efforts will provide a valuable enriched exposure to this disease to augment the medical school curriculum and residency didactic programs.

EXECUTIVE SUMMARY

  • Last year, we set our 2021 goal at 60 presentations, with hopes that the year would emerge from the 2020 pandemic onset. For the most part, it did. We gave 34 presentations in the Spring, and 27 presentations this Fall. Combined, these 61 presentations were to more than 2,400 medical students and physicians! Go us!

 

  • Of the 61 presentations, 59 were virtual and 2 were in-person. Of note, both of the in-person were to our newly launched residency program outreach. Schools, with students returning to in-person in the Fall, remained largely closed to guests. Looking ahead we anticipate seeing a few more in-person, but virtual is likely here to remain in a big way for the foreseeable future.

 

  • Our recent expansion into internal medicine residency programs (over 550 of them across the U.S.) has already resulted in 6 presentations on the calendar for 2021 and 2022. Our custom video specifically focused for this audience has been very well received and provides an excellent clinical educational complement to our patient stories.

 

  • We average around 35-40 speakers, which allows for diversity in our speaker population’s disease state and flexibility in their availability. This has served us well.  (more on that below)

 

  • We are particularly delighted that our medical school student mailing list – those interested post-presentation in continuing to receive information about amyloidosis – continues to grow and is now around 350! Each month we email brief information about some aspect of amyloidosis, with the content pulled from experts and other trusted organizations. Our goal is to keep amyloidosis in their mind as they approach graduation and begin seeing patients. 

 

  • In October we held our first webinar, “Discover the Power of the Patient/Physician Collaboration” with guests Dr. Rodney Falk and hereditary ATTR patient Sean Riley. We ourselves were very pleased with the discussion and insights, although the attendance fell short of expectations for medical student turnout.

 

  • With the help of one of our speakers Dr. Kathy Rowan, a professor in social science, we received approval from George Mason University’s IRB (Institutional Review Board) in August and launched a study to understand the impact and effectiveness of our educational offering to medical students. At present, we are in data collection mode and anticipate in 2022 we will transition to analysis of the data. If the conclusions are insightful, we intend to seek publication.

 

  • Each Spring and Fall we reach out to medical school deans, updating them on our activities.

 

THE NUMBERS

  • Our target universe is approximately 160 continental U.S.-based medical schools – both their curriculums and student interest groups, and over 580 internal medicine residency programs.
  • We gave 61 presentations in 2021, and have 13 already booked for 2022. 
  • Since the ASB started in the Fall of 2019, we now total 153 presentations, to approximately 6,900 students and physicians. A complete list of schools and resident programs can be found below.
  • Of the 2021 presentations, roughly 20% of the presentations were within the curriculum; 75% to student interest groups, and 5% to residency programs.

 

SPEAKERS

The cornerstone of our effort is our group of wonderful patient speakers, who passionately volunteer their time to give back and share their stories of life with amyloidosis.

 

Our speaker group is diversified by geography across the continental U.S., by amyloidosis type, by organ involvement, by gender and age. This is a rather deep bench, but we have found it both helpful and necessary. Helpful in that we can maximize attendance if we work around the preferred dates and times suggested by the schools. Helpful in that we can match specific disease states with audience focus (e.g., a cardiac amyloidosis patient speaker to a cardiology student interest group). Also, helpful in rotating speakers and types of disease at each school, since we are regularly returning to groups which have overlapping students. And necessary in that periodically, a speaker’s personal situation may change and they need to step back either temporarily, or permanently. We are delighted that our group is fairly stable and increasingly seasoned and experienced in sharing their stories. That said, we are fortunate to have a steady pipeline of new speaker interest, which we spend time screening, qualifying and training to bring online – only if needed (so it’s rare we add new speakers these days). At present, we feel this is an appropriate number of speakers for our current and anticipated growth. 

 

Thanks to two of our speakers who have extensive experience, we offer in-depth guidance for new speakers, and current speakers wanting a ‘refresh’ in the development of their presentation outline and rehearsal training for their delivery. In addition, prior to most virtual presentations we rehearse and test the new speakers’ audio and video technology. For those partaking, it has been an appreciated additional level of support and we believe is translating to a higher quality offering.

 

ADVISORS

We are proud to have an impressive group of medical experts and influencers in the world of amyloidosis, some of whom are also patients, as advisors to support our initiative. Our advisors are active in our efforts and contribute their specialized expertise in a variety of ways, such as medical school introductions, grant requests, educational development, and patient speaker assessment/development. We are extremely grateful for their assistance and believe that, thanks to their contribution, the ASB will make an even bigger difference in the diagnoses of this disease.  You can see our prestigious list of advisors on our website page www.mm713.org/speakers-bureau/ 

 

TESTIMONIALS – OUR TRUE REPORT CARD

Feedback from students and medical school professors has been extraordinarily positive. It reinforces to us that candid and authentic patient stories are a valuable complement to the medical school curriculum, strengthening the learning and deepening the durability for these future doctors about this disease. This is exactly why we do what we do. Here are just a few of the testimonials.

 

The opportunity for second year medical students to hear the story of a patient with amyloid is invaluable. The presentation addressed aspects of pathophysiology they are learning and the human side of medicine. This presentation format offered an excellent teaching opportunity to inform doctors-in-training about this serious disease. Our students gained insight into the patient’s journey through diagnosis, treatment and the challenges ahead. We all appreciated the patient’s generosity in sharing her experiences. Having patients teaching medical students about amyloidosis will have a lasting impact on our future doctors with increasing awareness of this disease and ultimately will help future patients.  Theresa Kristopaitis, M.D., Professor, Assistant Dean for Curriculum Integration, Loyola University Stritch School of Medicine

 

Such a powerful presentation that I will carry with me throughout my whole career, no matter what specialty I go into! I not only learned the importance of keeping amyloidosis on my differential, but also the importance of really listening to your patients and working through the hard diagnoses together.   Solana Archuleta, MD Candidate, University of Colorado School of Medicine

 

I had several students make comments after the conclusion of the presentation that it was the best, one even said ‘exceptional,’ presentations given at our school from a patient.  The materials gave all of the students, including myself, a great introduction to some of the pertinent findings in patients with amyloidosis. Co-President of the Internal Medicine Interest Group, University of Arizona College of Medicine, Phoenix

 

Hearing Ed talking about his journey with Amyloidosis was an incredible experience that only further inspired me to want to be a better physician for my future patients. It is one thing to learn about a condition in the classroom, but hearing the real-world struggles with it from another human being provides a whole new perspective. Ed was open about his journey and shared his feelings during each step, giving us insight into what it is like to be a patient with Amyloidosis. I will take what I learned from this presentation and apply it in order to ensure that patients I see in the future do not have to deal with the same issues that Ed had to deal with.   Gurkaran Singh, MD Candidate, University of Arizona College of Medicine, Tucson

 

Diseases such as amyloidosis are often managed by specialists, but it is important for primary care physicians to recognize these signs and direct these patients to these specialists. Increasing awareness of these diseases among all physicians will help patients reach an answer sooner and can have a significant impact on their lives.  Yue Zhang, MD Candidate, Northwestern Feinberg School of Medicine

 

We are saddened that we lost our co-founder Charolotte Raymond earlier this year, losing her battle with AL amyloidosis. Charolotte was our true inspiration for the Amyloidosis Speakers Bureau, and we know her passion for educating future physicians will be our guiding light. To keep our patient-led focus, we were thrilled to have one of our speakers, Lane Abernathy, join our Operating Committee. Lane, an amyloidosis patient herself, brings wonderful energy, experience and passion to help manage our efforts. We feel thankful to have her with us.

 

An additional word about our growing list of passionate volunteers, the majority of whom are active speakers. They help our efforts across many aspects of our operations, from management, to speaker development, to research, and video production. Their dedication to our effort is a testament of their belief in what we are doing to educate areas of the medical community, and we thank them all.

 

We are pleased with all we have accomplished thus far, energized by the feedback, cognizant that we have much ahead, and hope we have made you proud. After all, we can’t do any of this without you! As always, we welcome any comments you may have.

 

Stay safe, happy holidays to you and your family, and all the best for a new 2022!

 

Mackenzie, Lane, and Deb

Operating Committee of the Amyloidosis Speakers Bureau, sponsored by Mackenzie’s Mission

 

Our initiative is being well received by medical schools across the country. Below is a list of schools we have presented to at least once a year, whether through their curriculum or interest groups. After that, is the growing list of internal medicine residency programs where we also have presented.

 

MEDICAL / D.O. SCHOOLS

  • Albert Einstein College of Medicine
  • Baylor College of Medicine
  • California University of Science & Medicine, School of Medicine, San Bernardino
  • Case Western Reserve School of Medicine
  • Central Michigan University College of Medicine
  • Chicago Medical School, Rosalind Franklin University of Medicine and Science
  • Cleveland Clinic Lerner College of Medicine
  • Columbia University Vagelos College of Physicians and Surgeons
  • Drexel University College of Medicine
  • Florida Atlantic University Charles E. Schmidt College of Medicine
  • Florida International University Herbert Wertheim School of Medicine
  • Florida State University College of Medicine
  • Geisinger Commonwealth School of Medicine
  • George Washington School of Medicine
  • Icahn School of Medicine at Mount Sinai
  • Lake Erie College of Osteopathic Medicine
  • Lewis Katz School of Medicine at Temple University
  • Loyola University Chicago Stritch School of Medicine
  • Mayo Clinic Alix School of Medicine, Rochester
  • Mayo Clinic Alix School of Medicine, Scottsdale
  • Northeast Ohio Medical University College of Medicine
  • Northwestern University Feinberg School of Medicine
  • NYU Grossman School of Medicine
  • Oakland University William Beaumont School of Medicine
  • Quinnipiac University Frank H Netter MD School of Medicine
  • Stanford University School of Medicine
  • Touro College of Osteopathic Medicine in New York City
  • Tufts University School of Medicine
  • University of Arizona College of Medicine, Phoenix
  • University of Arizona College of Medicine, Tucson
  • University of California Irvine School of Medicine
  • University of California San Francisco School of Medicine
  • University of Central Florida College of Medicine
  • University of Chicago Pritzker School of Medicine
  • University of Cincinnati College of Medicine
  • University of Colorado School of Medicine
  • University of Connecticut School of Medicine
  • University of Florida College of Medicine
  • University of Hawaii, John A. Burns School of Medicine
  • University of Illinois College of Medicine, Chicago
  • University of Illinois College of Medicine, Peoria
  • University of Illinois College of Medicine, Rockford
  • University of Iowa Carver College of Medicine
  • University of Kansas School of Medicine, Wichita
  • University of Maryland School of Medicine
  • University of Massachusetts Medical School
  • University of Minnesota Medical School
  • University of Missouri Kansas City School of Medicine
  • University of Nevada Reno, School of Medicine
  • University of Pittsburgh School of Medicine
  • University of South Alabama College of Medicine
  • University of South Carolina School of Medicine, Columbia
  • University of Toledo College of Medicine
  • UNLV School of Medicine
  • Virginia Commonwealth University School of Medicine
  • Wayne State University School of Medicine
  • Wright State University Boonshoft School of Medicine
  • Yale School of Medicine

 

RESIDENCY PROGRAMS

  • Central Maine Medical Center
  • Meharry Medical College Program
  • Michigan State University Program, Sparrow Hospital
  • St. Francis Medical Center Program, Jersey Shore University Medical Center
  • Texas Institute for Graduate Medical Education and Research (TIGMER) Laredo Internal Medicine Residency Program
  • Western Michigan University Homer Stryker M.D. School of Medicine

 

THE POWER OF THE PATIENT/PHYSICIAN COLLABORATION

In this unique webinar, you will hear Dr. Rodney H. Falk and his patient Sean Riley discuss the importance of patient/physician collaboration in diagnosis, using Sean’s personal journey to illustrate the challenges of diagnosing hereditary amyloidosis, a life-threatening rare disease that hides in plain sight.

Hear how listening, observing, and questioning are critical to getting to a diagnosis, along with the recommendation for providers to always bring an elevated suspicion and curiosity to find answers.

Amyloidosis: A Brief Overview

 

Amyloidosis is a “group of diseases” that have the common feature where abnormal proteins (or in some cases normal proteins) behave abnormally, and the breakdown product of these proteins fold upon themselves, creating amyloid” fibrils” which deposit in various organs throughout the body. This potentially life-threatening disease can affect the heart, kidneys, liver, spleen, nervous system and digestive tract. (Falk, R., MD, 2018) A basic illustration of the creation of amyloid “fibrils” is shown below.

(Cleveland Clinic, 2020)

 

There are different types of the disease including AL or Light Chain Amyloidosis, AA Amyloidosis, Transthyretin Amyloidosis (referred to as TTR amyloidosis), and Localized Amyloidosis. TTR amyloidosis includes a hereditary type and a non-hereditary type. (Falk, R, MD, 2018)

 

Common symptoms of amyloidosis are shown in the following figure.

(The Canadian Amyloidosis Support Network)

 

Light Chain (AL) Amyloidosis

AL amyloidosis is the most common type of amyloidosis in developed countries, accounting for approximately 85% of all cases. There are approximately 3,000-5,000 new AL amyloidosis cases a year in the United States. (Falk, R., MD, 2018)  

 

The disease usually affects the heart, kidneys, liver and nerves. This type of amyloidosis is blood related, associated with the abnormality of proteins from plasma cells associated with bone marrow. Plasma cells normally create antibodies, known as immunoglobulins, that serve to combat bacteria and viruses. Antibodies are made up of “heavy chains” and “light chains.” AL amyloidosis stems from an abnormal expansion of plasma cells. The abnormal plasma cells secrete abnormal “free light chains” (FLCs) into the bloodstream. These abnormal light chain mutations become “sticky.” The sticky light chains bind together to form amyloid fibrils which can then accumulate in various body organs, as shown below. (Sherwood, A.L.)

(Cleveland Clinic, 2020)

 

Diagnostic testing for AL amyloidosis includes blood testing, urine tests and biopsies. Blood and/or urine tests are used to indicate the presence of amyloid protein, however bone marrow tests or other small biopsy samples of tissue or organs are needed to positively confirm the diagnosis of amyloidosis. Specific types of blood/urine testing include:

  • A 24-hour urine collection to look at the level of protein in your urine sample. Excess protein in the urine may be an indication of kidney involvement.
  • The level of ALP (an enzyme called “alkaline phosphatase”) in your regular blood workup.
  • Blood tests to look for stress and strain on the heart. Cardiac biomarkers that are used include troponin T or troponin I, and NT-proBNP (which stands for N-terminal pro-brain natriuretic peptide) or BNP (brain natriuretic peptide). 
  • Tests for abnormal antibody (immunoglobulin) proteins in the blood include the Free Light Chain Assay, which shows the level of kappa and lambda light chains in a separate blood test. The Free Light Chain Assay test is often referred to as FLC, which is an abbreviation for free light chains.
  • Another test for abnormal immunoglobulin can be done with blood and/or urine. It is called “immunofixation electrophoresis.”

 

Echocardiogram and imaging are performed so that the doctor can look for amyloid deposits in the heart, while viewing the size and shape of it and the location and extent of any impact of amyloid.

 

Tissue biopsy are performed to identify evidence of amyloid deposits. Tissue samples are sent to a lab for microscopic examination, where the tissue is stained with a dye called “Congo-red.”  After putting it under a microscope, amyloid protein is discovered if it turns an apple-green color, resulting in a diagnosis of amyloidosis. The most common tissue sample, which is almost always involved in generating an AL diagnosis, is called a fat-pad biopsy. Fat-pad biopsies are taken from the stomach. Biopsy samples may also be taken from the liver, kidney, nerves, heart, stomach, or intestines.

 

Bone marrow tests are also performed. These involve the removal of some liquid bone marrow and/or the removal of bone tissue. These samples can help to determine the percentage of amyloid producing plasma cells, and when tested in the lab they can assist in identifying whether the abnormal plasma cells are producing kappa or lambda light chains. (Amyloidosis Foundation, 2021)

 

If treatment begins during the early onset of clinical symptoms, the overall success rate is higher, so early detection is essential.

 

Patients with AL amyloidosis have benefited from the recent development of new drugs for myeloma, many of which work effectively on the plasma cells that cause AL amyloidosis. In addition, the FDA approved the first drug treatment specifically for AL amyloidosis in January 2021, called DARZALEX (daratumumab). Drug combinations are more effective than single drugs in attacking the abnormal plasma cells. Drugs that may be useful include traditional chemotherapy drugs (such as melphalan, and cyclophosphamide), as well as “proteasome inhibitor” and “immunomodulator” drugs. (Amyloidosis Foundation, 2021)

 

Stem cell transplant is also a preferred therapy, as it can provide long-term control of the underlying disease. However, only a minority of AL patients (typically less than 25%) are eligible. (Amyloidosis Foundation, 2021)

 

AA Amyloidosis

AA amyloidosis results from increased levels of the circulating serum “amyloid A protein.” Amyloid A protein levels normally elevate in the bloodstream as a response to infection and inflammation. If a patient has an infection or inflammatory condition for an extended period of time (six months or more) they would be at risk for developing AA amyloidosis. The amyloidosis can arise due to chronic inflammatory and infectious conditions, including rheumatic disease, inflammatory bowel disease, tuberculosis, osteomyelitis, lupus, and hereditary fever syndromes. Amyloid deposition usually begins in the kidneys, but the liver, spleen, lymphnodes, and intestines are also commonly affected.

 

If a patient has been diagnosed with a chronic inflammatory disease or chronic infection and they develop high levels of protein in the urine or other associated AA symptoms, then the physician should test for AA amyloid deposition. When kidney damage occurs, it can be clinically shown as protein found in the urine (nephrotic syndrome) or impairment of kidney function.

 

A test involving a 24-hour urine collection can be performed to look at the level of protein in the patient’s urine. If amyloidosis is suspected in most cases a biopsy of the kidney tissue performed.

 

In order to identify AA amyloid, the most common diagnostic test is staining the tissue sample with antibodies that are specific to AA amyloid, the “anti-AA serum.” If the anti-AA serum result is positive then AA amyloidosis is diagnosed. Once AA amyloidosis is confirmed the primary underlying inflammatory condition should then be identified.  

 

With AA amyloidosis it is most important to treat the underlying infection or inflammation in order to reduce the level of the precursor for the AA amyloid deposits.  These treatments vary depending on the underlying condition. Some treatments that exist for inflammatory diseases include surgery on the infection or tumor, drug therapies for rheumatoid arthritis, antibiotics for chronic infection, among others.

 

With effective treatment of the underlying inflammation amyloid deposits have been known to reduce and nephrotic syndrome can improve. If the kidney function has become significantly impaired, it rarely recovers. 

 

Supportive treatment is very important, including nephrology, cardiology, and neurology. (Amyloidosis Foundation, 2021)

 

TTR (Transthyretin) Amyloidosis

As stated earlier, TTR amyloidosis includes a hereditary type and a non-hereditary type.

 

Hereditary (Familial) Amyloidosis, also referred to as ATTRv amyloidosis, is associated with an inherited genetic mutation. There are various subtypes of familial amyloidosis that are associated with specific demographic groups including Portuguese, Irish, Swedish, Afro-American, and Japanese lineage. 

 

The non-hereditary type of TTR amyloidosis, known as Wild Type Amyloidosis is a disorder predominately of older men in their 70s and beyond. This form of the disease may actually be responsible for up to 10% of male patients having heart failure due to stiff heart tissue. (Falk, R., MD, 2018)  

 

As with AL and AA Amyloidosis, TTR Amyloidosis can manifest itself with a multitude of symptoms. In a vast majority of cases the resultant symptoms are cardiological and/or neuropathic in nature. A basic illustration of the production method for TTR amyloid fibrils is shown below.

Early diagnosis if TTR amyloidosis is essential so as to help minimize the extent of bodily tissue or system damage. First, a patient is tested to determine if they have amyloid proteins in their body. The main diagnostic testing is similar to that described above for AL Amyloidosis, including blood tests, urine tests and biopsies. If amyloidosis is confirmed but the type is not initially identified, additional tests are performed to determine the existence and variation of ATTR.

 

Once it is determined that there is transthyretin amyloid protein (via biopsy and Congo red staining), the specific protein needs to be identified by protein sequence analysis and DNA sequencing. A blood sample is sent to a lab where the DNA chains are analyzed. Sections of the DNA chain are checked for genetic markers of the DNA defect. Hereditary amyloidosis variations affect patients differently. It is critical to establish which variation exists in order to identify a tailored treatment plan.

 

Treatment of TTR amyloidosis include treating the source and symptoms. Source treatment involves slowing down, or stopping, the overproduction of amyloid at the source of the disease. Historically, liver transplant has been helpful, however, the statistics vary as to who can benefit from these transplants, with the outcome dependent largely on the specific mutation that exists in the patient. In some situations, combined heart and liver transplants have helped patients with an ATTR variant that produces cardiac problems. 

 

In 2019, two drugs were approved for treatment of ATTR polyneuropathy associated with TTR amyloidosis in adults.  The first was ONPATTRO (patisiran), a first of its kind RNA interference therapeutic drug which aims to silence the gene expression for patients with the hereditary type TTR.  The second drug approved is TEGSEDI (inotersen), which reduces the production of TTR protein. Also, in 2019, VYNDAQEL and VYNDAMAX (tafamidis) were approved by the FDA for ATTR cardiomyopathy.  (Amyloidosis Foundation, 2021)

 

There is supportive treatment for the various symptoms associated with TTR Amyloidosis, possible symptoms include peripheral neuropathy, autonomic neuropathy, cardiac and kidney problems. There are medications that can be prescribed to treat the effects of peripheral neuropathy, such as tingling or burning sensations. Many patients experience autonomic neuropathy and may require treatment for blood pressure, heart rate, digestion, and perspiration, depending on the location of the damage to the nerves. Other gastrointestinal dysfunctions may require treatment for symptoms that include poor nutritional health, diarrhea or constipation, and nausea or vomiting. (Amyloidosis Foundation, 2021)

 

Localized Amyloidosis

Localized amyloidosis often has a better prognosis than the types that affect one or more organ systems. Typical sites for localized amyloidosis include the bladder, skin, throat or lungs. Correct diagnosis is important so that treatments that affect the entire body can be avoided. (Mayo Clinic. 2021)

 

Summary

Amyloidosis is a complex multi-systemic disease where no two patients are alike. Symptoms are often vague and vary from patient to patient, even within the same disease type, making diagnosis one of the biggest hurdles for the medical community. It is not uncommon to hear from patients that it took multiple years and multiple doctors to ultimately arrive at a correct diagnosis, all the while the disease continued to progress. While treatment is type-specific, it is individualized from patient to patient depending on organ involvement. 

 

In the words of Morie A. Gertz, M.D., M.A.C.P., of the Mayo Clinic and regarded as a leading world expert on amyloidosis.

 

“Thanks to the Amyloidosis Speakers Bureau, providers across the country are being instructed on techniques to suspect and recognize amyloidosis and how to efficiently make the diagnosis in a timely fashion.  Incorporating testing for amyloidosis into the work flow of patients with cardiomyopathy, proteinuria, peripheral neuropathy, unexplained weight loss, and smoldering multiple myeloma has been successful. 

Comprehensive education remains the best strategy to save lives for this rare disorder.”

 

 

 

Sources
Falk, Rodney, MD, Understanding Amyloidosis. (2018).https://www.youtube.com/watch?v=bE68vvDtnyM&t=134s. 
Cleveland Clinic. (2020, June 2). Amyloidosis: AL (Light Chain). https://my.clevelandclinic.org/health/diseases/15718-amyloidosis-al-amyloid-light-chain. 
Sherwood, A. L. (n.d.). Understanding Freelite®, the lab test for serum free light chains. Lecture. 
The Canadian Amyloidosis Support Network. (n.d.). About Amyloidosis. http://thecasn.org/home-2/what-is-amyloidosis/al-amyloidosys/al-amyloidosis-symptoms/
Mayo Clinic. 2021. Amyloidosis – Symptoms and causes. [online] Available at: <https://www.mayoclinic.org/diseases-conditions/amyloidosis/symptoms-causes/syc-20353178> [Accessed 14 July 2021].
Amyloidosis Foundation. 2021. AL – Amyloidosis Foundation. [online] Available at: <https://amyloidosis.org/facts/al/#diagnosis> [Accessed 14 July 2021].

 

This website uses cookies

This site uses cookies to provide more personalized content, social media features, and ads, and to analyze our traffic. We might share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services. We will never sell your information or share it with unaffiliated entities.

Newsletter Icon